A generalized framework for controlling FDR in gene regulatory network inference
نویسندگان
چکیده
منابع مشابه
CF-GeNe: Fuzzy Framework for Robust Gene Regulatory Network Inference
Most Gene Regulatory Network (GRN) studies ignore the impact of the noisy nature of gene expression data despite its significant influence upon inferred results. This paper presents an innovative Collateral-Fuzzy Gene Regulatory Network Reconstruction (CF-GeNe) framework for Gene Regulatory Network (GRN) inference. The approach uses the Collateral Missing Value Estimation (CMVE) algorithm as it...
متن کاملStepup Procedures Controlling Generalized Fwer and Generalized Fdr
In many applications of multiple hypothesis testing where more than one false rejection can be tolerated, procedures controlling error rates measuring at least k false rejections, instead of at least one, for some fixed k ≥ 1 can potentially increase the ability of a procedure to detect false null hypotheses. The k-FWER, a generalized version of the usual familywise error rate (FWER), is such a...
متن کاملGene regulatory network inference: an introductory survey
Gene regulatory networks are powerful abstractions of biological systems. Since the advent of high-throughput measurement technologies in biology in the late 90s, reconstructing the structure of such networks has been a central computational problem in systems biology. While the problem is certainly not solved in its entirety, considerable progress has been made in the last two decades, with ma...
متن کاملKernel-based Gene Regulatory Network Inference
We propose a kernel-based method for inferring regulatory networks from gene expression data that exploits several important factors previously neglected in the literature, including expression clustering, nonlinear regulator-gene relationships, variable time lags and gene competition. In particular, our approach infers regulatory relationships by encouraging genes with similar expression patte...
متن کاملInference in a Gene Regulatory Network with Transcriptional Time Delay
Background: Ordinary differential equations (ODEs) are an important tool for describing the dynamics of biological systems. However, for ODE models to be useful, their parameters must first be calibrated. Parameter estimation, that is, finding parameter values given experimental data, is an inference problem that can be treated systematically through a Bayesian framework. A Markov chain Monte M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2018
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/bty764